Studies in Science of Science ›› 2025, Vol. 43 ›› Issue (12): 2631-2641.

Previous Articles     Next Articles

AI for Biology: Progress, Characteristics,and Future

  

  • Received:2024-12-29 Revised:2025-01-27 Online:2025-12-15 Published:2025-12-15

人工智能驱动生物学研究:历程、特征及展望

高璐1,舒心雨1,2,王彦雨1   

  1. 1. 中国科学院自然科学史研究所
    2.
  • 通讯作者: 高璐
  • 基金资助:
    从参与到共治:STS视角下的生物技术治理;战略性基础研究与前沿学科发展:以中国科学院分子生物学为例

Abstract: Since the 21st century, artificial intelligence (AI) technologies, particularly those exemplified by deep learning, have significantly accelerated the interdisciplinary integration of various fields. This integration has led to a surge of AI-driven scientific research, especially in the application of AI within the realm of biology (AI4B). Over the past seven decades, AI and biology have mutually influenced one another; while AI has enabled the precise resolution of complex biological problems, it has simultaneously fostered its own continuous iteration and advancement. AI4B has established a transformative model for the production of scientific knowledge through human-machine collaboration, which can be delineated across three dimensions: in the tool empowerment dimension, AI enhances task efficiency; in the deep embedding dimension, AI reshapes the scientific innovation chain; and in the general platform dimension, AI addresses multimodal tasks. The development of a human-machine symbiotic AI4B knowledge ecosystem is of paramount importance for effectively mitigating AI-related risks, formulating pertinent policies, and shaping the "emerging science and technology" that AI represents.

摘要: 自21世纪以来,以深度学习为代表的人工智能技术(AI)加速学科交叉融合,催生了人工智能驱动科学研究热潮,尤以在生物学领域的应用为典型(AI4B)。在过去70余年汇聚历程中,AI与生物学之间双向互驱,AI在促进生物学问题精确求解的同时,也推动了自身的不断迭代与发展。AI4B通过人机协作形成了一种变革性的科学知识生产模式,具体体现在三个维度:在工具赋能维度,AI提升了确定任务效率;在深度嵌入维度,AI形塑科学创新环链;在通用平台维度,AI求解多模态任务。构建人机共生的AI4B知识生态,对有效面对AI风险、制定相关政策、塑造以AI为代表的“形成中的科学技术”具有重要意义。