• 中国科学学与科技政策研究会
  • 中国科学院科技战略咨询研究院
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

科学学研究 ›› 2026, Vol. 44 ›› Issue (1): 4-13.

• 专稿 • 上一篇    下一篇

人工智能驱动的科学学理论与方法重塑

李赫扬,方思清,陈凯华   

  1. 中国科学院大学公共政策与管理学院
  • 收稿日期:2025-08-15 修回日期:2025-12-01 出版日期:2026-01-15 发布日期:2026-01-19
  • 通讯作者: 陈凯华
  • 基金资助:
    国家自然科学基金委国家杰出青年科学基金项目,创新管理与创新政策;国家自然科学基金委员会专项项目,人工智能发展对科研活动的影响及政策应对;中国科学院战略研究与决策支持系统建设专项,建制化推动人工智能驱动科研范式变革研究

Artificial Intelligence-Driven Theoretical and Methodological Transformation of the Science of Science

  • Received:2025-08-15 Revised:2025-12-01 Online:2026-01-15 Published:2026-01-19
  • Contact: Kai-Hua Chen

摘要: 人工智能的迅猛发展正深刻改变科学研究的运行逻辑与组织模式,也将在根本上重塑科学学的理论基础与方法体系。本文基于人工智能驱动科学研究的兴起,系统分析了人工智能赋能下科学学研究在研究对象、核心问题与方法工具上的整体转型。研究表明,人工智能既作为科学系统的变革力量,催生新的科学学研究对象与问题,又作为强大的分析工具突破传统科学学方法的技术瓶颈。这一系列变革将使科学学实现从外部表征到内在机制、从现象描述到机制解释、从被动观察到主动设计的根本性拓展,新的研究范式呈现出前瞻性、系统性、协同性与设计性等核心特征。而在方法体系层面,人工智能推动了科学学观察测量的客观化与多模态化、分析建模的预测化与网络化、解释预测的系统化与可解释化,显著增强了科学学在科研评价、知识发现与科研生态设计中的实践能力。然而,技术、伦理、制度等方面的风险与挑战也亟待应对。本文提出,应在保持科学学学科独特性的同时,以方法创新驱动范式演进,构建开放、透明、可解释且具有前瞻指导力的方法体系,以实现人工智能赋能下科学学的持续跃升。

Abstract: The rapid advancement of Artificial Intelligence (AI) is profoundly changing the operational logic and organizational models of scientific research, fundamentally reshaping the theoretical foundation and methodological system of the Science of Science (SciSci). Based on the rise of AI-driven scientific research, this paper systematically analyzes the holistic transformation of SciSci research across its objects, core problems, and methodological tools under the empowerment of AI. The study indicates that AI acts simultaneously as a revolutionary force within the scientific system, generating new SciSci research objects and questions, and as a powerful analytical tool, breaking through the technical bottlenecks of traditional SciSci methodologies. This series of transformations will enable SciSci to achieve a fundamental expansion: from external representation to intrinsic mechanisms, from phenomenological description to mechanistic explanation, and from passive observation to active design. The new research paradigm exhibits core characteristics such as prospectiveness, systematicness, synergy, and designability. At the methodological level, AI promotes the objectification and multi-modality of SciSci's observation and measurement, the predictive and networked nature of its analysis and modeling, and the systemic and explainable nature of its explanation and prediction. This significantly enhances SciSci's practical capabilities in research evaluation, knowledge discovery, and scientific ecosystem design. Nevertheless, risks and challenges in technical, ethical, and institutional aspects urgently need to be addressed. This paper proposes that, while maintaining the unique identity of the SciSci discipline, we should drive paradigm evolution through methodological innovation, and construct an open, transparent, explainable, and prospectively guiding methodological system to achieve the continuous leap forward of SciSci empowered by AI.

中图分类号: