• 中国科学学与科技政策研究会
  • 中国科学院科技战略咨询研究院
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

科学学研究 ›› 2026, Vol. 44 ›› Issue (1): 14-28.

• 专稿 • 上一篇    下一篇

AI 驱动管理科学研究———范式变革、研究现状与未来展望

王光辉1,2,3,陈中飞2,吴刚4   

  1. 1.
    2. 国家自然科学基金委员会管理科学部
    3. 中国科学院地理科学与资源研究所
    4. 国家自然科学基金委员会
  • 收稿日期:2025-09-03 修回日期:2025-11-24 出版日期:2026-01-15 发布日期:2026-01-19
  • 通讯作者: 吴刚

AI Driven Management Science Research: Paradigm Shift, Research Progress, and Future Prospects

  • Received:2025-09-03 Revised:2025-11-24 Online:2026-01-15 Published:2026-01-19

摘要: 人工智能技术的迅猛发展正驱动管理科学研究发生深刻的范式变革。为系统梳理人工智能与管理科学融合的路径、现状与挑战,本研究通过对Web of Science数据库中FMS高质量期刊文献进行大规模计量分析,构建并理解其根本性变革的系统框架。该方法覆盖了1996至2025年间管理科学与经济科学领域的25719篇文献,运用VOSviewer与RStudio等工具进行了关键词共现、国家合作网络及研究趋势的可视化分析。结果显示:该领域发文量呈指数增长态势,中国与美国是核心贡献国;管理科学与经济科学领域的研究重心呈现显著的差异性,管理科学侧重实践管理场景优化与效率提升,经济科学则更关注人工智能对经济运行规律及资源配置机制的影响;研究热点集中于技术应用、算法风险、服务科学中的信任问题及企业数字化转型等关键聚类。结论表明,人工智能已从辅助工具演变为推动管理科学理论重构与研究范式向“人-物-信息”三元空间跃迁的核心驱动力,未来研究应聚焦于人机协同的内在机制、算法治理的伦理边界及在重大决策中的制度适配等前沿议题,推动构建适应智能时代的新型管理科学理论体系。

Abstract: Artificial Intelligence(AI) technology has experienced rapid development in recent decades, driving a profound paradigm shift in management science research and reshaping the theoretical framework, research methodologies, and practical application scenarios of the discipline. To systematically sort out the path, current situation, and challenges of the integration of AI and management science, this study conducted a large-scale quantitative analysis of high-quality journal literature indexed in the Web of Science database, with a focus on publications included in the Financial Management Society (FMS) journal list, and constructed and clarified the systematic framework of its fundamental transformation. This method covers 25,719 literatures in the fields of management science and economic science from 1996 to 2025, and uses professional analytical tools such as VOSviewer and RStudio to conduct visual analysis of keyword co-occurrence relationships, national cooperation networks, and research trend evolution. The results show that the number of publications in this field presents an exponential growth trend over the past three decades, with China and the United States as the core contributing countries; there are significant differences in the research focus between management science and economic science; research hotspots are concentrated in key clusters such as the application of AI technology in management practice, the identification and response to algorithmic risks, the construction of trust mechanisms in service science under the intelligent environment, and the AI-driven digital transformation of enterprises, while notably, significant differences exist in the research focus of management science and economic science during the integration process—management science tends to prioritize the optimization of practical management scenarios and efficiency improvement, while economic science focuses more on exploring the impact of AI on economic operation rules and resource allocation mechanisms. The conclusion indicates that AI has evolved from an auxiliary tool to a core driving force for promoting the reconstruction of management science theories and the transition of research paradigms towards the "human-object-information" three-dimensional space. Future research should focus on cutting-edge issues such as the internal mechanism of human-machine collaboration, the ethical boundaries of algorithm governance, and institutional adaptation in major decision-making, so as to promote the construction of a new management science theoretical system adapting to the intelligent era.